Primer on Inventory Management

_

Excercises

Economic Order Quantity Model

Exercise 1: Solution of the EOQ model

In the video, I explain that the cost function is convex in the order quantity x, because fixed order cost and inventory holding cost are convex in the order quantity x and the sum of convex functions is convex. An alternative proof is to show that the second derivative of the cost function is positive.

- i. Please show that the second derivative of $Z(x) = h\frac{x}{2} + K\frac{\mu}{x} + c\mu$ is always positive.
- ii. Set the first derivative equal to zero and solve for x^* .
- iii. Use the value of x^* in Z(x) to compute the cost of the optimal solution $Z(x^*)$.
- iv. Show that the optimal fixed order cost have the same value as the optimal inventory holding cost.

Exercise 2: Application of the EOQ model

Pencils at the campus bookstore are sold at a steady rate of 60 per week. The bookstore can purchase the pencils for 2 cents each and sells them at a price of 15 cents each. It costs the bookstore 12 EUR to initiate an order, and holding cost are based on an annual interest rate of 25 percent.

- i. Determine the optimal order quantity x^* .
- ii. Determine the cost of the optimal solution $Z(x^*)$.

Exercise 3: Sensititvity of the solution

In this exercise, you will analyze how the cost of a solution is affected if we deviate from the optimal solution. For example, if the optimal order quantity were $x^* = 92$ and we would round up the order quantity to x = 100, e.g. the package size could be 100, and therefore x = 100 would be preferable. Then an insensitive solution would have about the same cost for x = 100 than for $x^* = 92$. An insensitive solution is desirable, because it allows us to deviate from the optimal solution without major increases in cost.

- i. Assume that $K=40,\ h=0.1,\ c=1,$ and $\mu=10.6.$ Compute the optimal order quantity $x^{\star}.$
- ii. Compute the optimal cost $Z(x^*)$.
- iii. Assume that you want to order 10 % less than x^* , i.e., $x = 0.90x^*$, how much would cost increase with this order quantity?
- iv. Derive a general expression for the sensitivity of solution, by deriving a formula for $\mathcal{Z}(x)/\mathcal{Z}(x^*)$, where $\mathcal{Z}(x) = Z(x) c\mu$.
- v. Plot $\mathcal{Z}(x)/\mathcal{Z}(x^*)$ for $x = a \cdot x^*$ with $a = 0.5, 0.51, \dots, 1.5$.
- vi. How do you evaluate the sensitivity of the solution?